PROPOSAL FOR A PARTNERSHIP IN THE DEVELOPMENT AND CREATION OF THE ELECTRICAL REACTOR WITH CHAIN REACTION.

Hello!

Please consider our proposal.

- 1. <u>Objective</u>: Replacement of the nuclear reactors of Nuclear power plants (NPP) and the steam boilers of Thermal power plants (TPP) at the electric reactors with a chain reaction. That will get rid of radioactive and hydrocarbon fuels and will put the electric power industry into the category of fuel-free electric power industry.
- 2. <u>Capabilities</u>: electric reactors will allow solving the problem of heating and hot water supply in the cities, of generating of the electrical energy on existing schemes of the nuclear power plants and thermal power plants, of the production of drinking water from sea water in large quantities.
- 3. <u>Sales market</u>: the global electric power industry, heat supply of cities and world production of drinking water.
- 4. <u>Elaborated</u>: a theoretical model of the electric reactor based on the experimental results of existing technologies used in other destinations due to the persecution of other technical purposes.
- 5. <u>It is necessary</u>: financing and production sites as the "ATOMMASH" for the production of large reactor housings under pressure of 240 bar and $t = 560^{\circ}$ C and a pressure of 24 bar and $t = 150^{\circ}$ C.
 - 6. Partnership: on a contractual basis.
 - 7. Stages: 1st the creation of an experimental model in scale $1:10 \div 1:20$; 2nd the creation of the reactor of the required power.
 - 8. Economy: equipment sale + share in the sale of energy resources.

Theoretical study of the project

We have created a new Neutron Sciences (NS) – Neutron physics, Neutron chemistry and Neutron astrophysics (see http://neutronscience.com.ua/books/) and tested them in solving of the certain tasks.

Let us denote the basic postulates of Neutron Sciences.

1. Atoms as a nucleus with electrons in nature do not exist, and there are chemical elements in the form of six- and eight-pointed "hedgehogs" (see below Card № 2).

CARD №2

a). Quad-based six-pointed 'hedgehog' – simple sodium (Na)

b). Quad-based eight-pointed 'hedgehog' – radioactive sodium (Na)

c) Quad structural unit (SU-4)

d) pentad-based eight-pointed 'hedgehog'

N 90° N 90° N

e) pentad-based six-pointed 'hedgehog'

f) Pentad structural unit (SU-5) (noble chemical elements – aurum, platinum, etc. are built on the basis of 'pentads')

Fig.3. Chemical elements – 'hedgehogs' and structural units SU-4 and SU-5

Both six-pointed (*fig.3.a and 3e*), and eight-pointed (*fig.3b* and *3d*) 'hedgehogs' are formed with needles on the basis of SU, they are summarized in the tables of conversions 1, 2 and 3, 4 (see http://neutronscience.com.ua/books/ "Tables N = 1, N = 2, N = 3, N = 4 of successive conversion of chemical elements into each other"). Let us consider a cell from *Table 2* of chemical elements conversions with chemical element *Lithium* as an example (see *fig.4* and *Fragment of Table of Conversions 2*).

Fig.4. Six-pointed 'hedgehog' with quad-based needles.

Lithium – 'solid state'

	Solid state (physical state of the element)									
	3 (atomic number)									
	Li ² ss (symbol)	71 (actual quantity of neutrons in the element)								
	Lithium (name)	-1 (neutron deficit in protogas)								
3	534 (roentgen density in solid state, kg/m³)	72 (theoretical number of neutrons)								
	542 (gravitational density in solid state, kg/m³)	3 (number of layers of structural units (SU) in the hedgehog's needles)								
	7.1 (relative neutron mass M)	18 (number of SU-quads without neutron deficit)								

Fragment of Table of Conversions 2 (6x4). LITHIUM.												
ga	s-1	liqu	id-1	gas	liquid-2 gas-3				solid state			
	3											
Li ² gas1	51	T :2	55	Li ² gas2	59	Li^2_{liq2}	63	Li ² gas3	67	Li ² ss	71	
Lt ⁻ gas1	-1	Li^2_{liq1}	-1		-1	Lt ⁻ liq2	-1		-1	Lithium	-1	
	52		56		60		64		68	534	72	
389	2 1/6	420	$2^{2}/_{6}$	450	$2^{3}/_{6}$	481	2 4/6	511	2 5/6	542	3	
5.1	13	5.5	14	5.9	15	6.3	16	6.7	17	7.1	18	

Fig.5. An example of the crystalline lattice made of chemical elements – 6x4 'hedgehogs'

Needles of a 'hedgehog' connect with the needles of neighboring 'hedgehogs' with the help of *crystalline lattice* (see *fig.5*). Neutron Sciences distinguish such kinds of interactions (chemical bonds) of hedgehogs' needles – metallic, covalent (polar and non-polar), ionic and sedimental (metallic, covalent, ionic) chemical bonds.

DIRECT CONFIRMATION OF THE STRUCTURE OF THE CHEMICAL ELEMENTS IN THE FORM OF "HEDGEHOGS" ON THE BASIS OF ELECTRON MICROGRAPH OF CRYSTAL DIAMOND

Fig.16. Electron micrograph of high-resolution of the diamond, the position of the carbon atoms projected on the plane (110).

a) a primary crystal with sizes to calculate

b) blocking of primary crystals:

- 1 hexagonal cavity formed by the 12 chemical elements containing gases;
- 2 rod of light;
- 3 domain

c) rod of light in the body of the primary crystal Fig.17.

- 2. Negative electric charges are electrons (according to NS) e⁻-particle and α^- -particle with speed "c" and $0.1 \div 0.3$ «c» and they have the south pole in the front (ahead); $e^- = \alpha^- + \gamma^-$ (see below Card No 1);
- 3. Positive electrical charge is a β^+ -particle (graviton according to NS) having a North pole in front (ahead), and $\beta^+ = \alpha^- + \gamma^-$ (see below Card No 1);
- 4. β^+ -particle and e⁻-particle are transformers, i.e. they can be converted into each other.

MAGNETIC – graviton or β ⁺ - particle	Anode carrier – transformer mainly on the basis of the chemical element Ferrum with the needle 43 SU-4 long	Package of needles (from 5 to 7 pcs) Magnetic field of needles Magnetic field of crystalline body Crystalline body Nuclear force direction and motion direction
DURING GRAVITON FRACTURE	α – particle (a needle with crystalline body) γ - particle (a package of 5-7 needles or package of	Nuclear force direction and motion direction
ELECTRIC – "electron", e-particle (when fractured – α-particle and γ-particle)	or package of light) Cathode carrier – transformer	Package of needles (from 5 to 7 pcs) Magnetic field Crystalline body Nuclear force direction and motion direction

CHEMICAL ELEMENT – "GAS" There is one unbalanced 'engine' (SU)

Under certain conditions, all of the above energy carriers and their temporal combinations are broken into smaller structures (needles and cords of light, the SU), as well as into neutrons and neutrinos (for the II parallel world – the 'dark matter'), which become heat carriers.

Let us pay attention to the fact that from the point of view of NS the Universe has a **plurality of parallel worlds** built on the same principle, but using different initial carriers: the I world uses the neutron, the II the world – the neutrino (dark matter), the III world - the superneutrino, etc.

5. All chemical bonds in the chemical elements and in the energy carriers, regardless of their type are magnetic clasps – "Velcro fasteners" (see below Card no. 3).

THE MECHANISM OF ALL TYPES OF CHEMICAL BONDS

Now let us consider the mechanism of all types of chemical bonds –it is common, a magnetic one.

MFL from gravitons on the basis of neutrino and super-neutrino (II world)

Fig.10

Let us have a look at a covalent chemical bond (*Fig.11*) with magnetic clasps – 'Velcro fastener'. In the needles with SU-4 covalent bond will be carried out by three magnetic clasps – 'Velcro fastener'; and by four of them with SU-5.

Fig.11. Covalent bond

The metallic chemical bond of a pair of needles will have one magnetic clasps – 'Velcro fastener', the length of which can change.

The ionic chemical bond will have four short magnetic clasps – 'Velcro fastener'.

Thus, all the chemical bonds regardless of their type are magnetic clasps – 'Velcro fastener'.

Let us recall that magnetic clasps — 'Velcro fastener' are generated automatically as soon as external compression of parallel neutrino magnetic field lines (MFL) took place, regardless of their motion direction.

Looking at *Fig. 13* we see that there is a multitude of MFL compression zones in the chemical element, they keep the structure from damage and allow constructing the crystal lattice of any kind, even the most exotic.

The top needle symbolically is not shown

Fig. 13. Magnetic clasps - 'Velcro fastener' in a chemical element

6. The Neutron (nuclear) forces are impact forces (see below Card № 4).

CARD № 4 MECHANISM OF NEUTRON (NUCLEAR) POWER FORMATION

Fig.12

We are looking at *Fig.12* and see that inside the SU-4 and SU-5 neutrino MFLs will be compressed, i.e., magnetic clasps – 'Velcro fastener' will appear, which does not let structural units decompose. During paired contacts of rotating neutrons, which tend to run along the surface of each other, there will be throws with a blow on the central neutron. Thus, the neutron (nuclear) forces are impact forces!

7. Gravitons (β +-particles) are formed on the surface chemical elements (see below Card No. 5).

Fig.14. Graviton formation

CARD №5

Where do gravitons and electrons come from? Gravitons are generated after formation of α^-

particles on the free needles of surface chemical elements of the bodies after they are torn out by oscillating heavy α -particles from their lattices with the break-down of chemical bonds (see *Fig.14*), thus, many bodies made of different chemical elements may produce gravitons;

Slow (α^-) and fast (e⁻) electrons are obtained from gravitons, and electricity can be 'ferrous', 'golden', 'silver', 'uranium', etc., depending on which chemical elements the graviton was formed on;

SUMMARY TABLE OF CONVERSIONS OF CHEMICAL ELEMENTS Nº 6

(m substance = 1kg)

System S	SU	Table	1(8x4)	Table	2(6x4)	Table	3(8x5)	Table	4(6x5)		mhedgehog	Sym	
1		n^0	$ ho_{ m gr}$	\mathbf{n}^0	$ ho_{ m gr}$	\mathbf{n}^0	$ ho_{ m gr}$	\mathbf{n}^0	$ ho_{ m gr}$	Ptheor			Name
12	1	2	3	4	5	6	7	8	9	10		12	13
1 1 1 1 1 1 1 1 1 1	1/2								107				
14	1 1/8(6)		206	27	206	34	259	34	259	206	$6,77 \cdot 10^{-33}$	Не	
Section 190													
6 9 1457 143 109 239 1823 179 1366 1830 2.810 20 White Proposition A 1610 16													
Column C						199	1518	149	1137				
1		191	1437	143	1091							Ca	
17	6					239	1823	179	1366	1830		Pwhite	
7 223 1738 167 1274 279 2129 209 1738 5,72 10-30 Mg/ Magnesium 776 776 776 776 776 777 776 777 776 777 77						244	1862	184	1404				
716 19													
Total Figure Fi		223	1738	167	1274	270	2120	200	1505				
8				171	1305	219	2129						
8		255	1946					214	1033				
\$3896 \$267 \$2037 \$195 \$1488 \$334 \$2548 \$254 \$1938 \$2040 \$1,19·10° \$2. CI Chlorine ▲		233	1710	171	1137	319	2434	239	1823				
9 287 2190 215 1640		267	2037	195	1488								
9	8 7/8(6)	283	2159	211	1610	354	2701	264	2014		$1,47 \cdot 10^{-29}$	F	
10	9	287	2190	215	1640					2265	$1,54 \cdot 10^{-29}$	C_{gr}	(graphite)
10	9					359	2739	269	2052	2702		P_{bl}	
11	10	319	2434	239	1823					2314	$2,34 \cdot 10^{-29}$	В	Boron
12	10					399	3044	299	2281	2223	$2,27 \cdot 10^{-29}$	P _{red}	
12	11					439	3349	329	2510	2698			
13	12	383	2922	287	2190					2085	$5,48 \cdot 10^{-29}$	S_1	
13	12					479	3655	359	2739	3513	,	Cdiam	(diamond) ▲
13 1/6		415	3166	239	2373								
15				21.5	2.102	519	3960						
15 3/6		470	2655			500	4570						
16		4/9	3033			399	4570						
17		511	3899			639	4875						
18 18(6) 579													
21 671 5119 503 3838		579		435	3319	724		544	4151		$2,5 \cdot 10^{-28}$		
21	20			479		799	6096	599	4570	4504		Ti	
22 703 5364 527 4021 879 6706 659 5028 6694 4,48·10⁻28 Sb Stibium 23 735 5608 551 4204 919 7012 689 5257 6977 5,34·10⁻28 Eu Europium 23 1/6(8) 739 5638 555 4234 924 7050 694 5295* 5245 6,27·10⁻28 Eu Europium 24 767 5852 575 4387 959 7317 719 5486 7194 6,32·10⁻28 Cr Chromium 25 799 6096 599 4570 6096 599 4570 6000 8,93·10⁻28 Ra₂ Radium -2 25 799 6096 599 4570 799 7622 749 5715 5780 8,48·10⁻28 Ası Arsenic-1 ▲ 26 831 6340 623 4753 1039 7927 779 5943 5907 9,91·10⁻28 Ga Gallium 27 863 6584 647 4936 707 8232 809 6172 6162 1,15·10⁻27 La₁ Lanthanum-1 28 895 6829 671 5119 1119 8538 839 6401 6769 1,40·10⁻27 Nd Neodymium-1 29 927 7073 695 5303 707 9148 899 6859 7260 1,85·10⁻27 In Indium 29 927 7073 695 5303 707 707 707 1,61·10⁻27 Nd Neodymium-1 29 927 7073 695 5303 707 707 707 707 707 707 707 707 707		671	5119	503	3838								
23 735 5608 551 4204 919 7012 689 5257 6977 5,34·10⁻²²² Yb Ytterbium 23 1/6(8) 739 5638 555 4234 924 7050 694 5295* 5245 6,27·10⁻²²² Cr Chromium 24 767 5852 575 4387 959 7317 719 5486 7194 6,32·10⁻²²² Cr Chromium 25 799 6096 599 4570 4472 1,01·10⁻²² Y Yttrium 26 831 6340 623 4753 1039 7927 779 5943 5907 9,91·10⁻²² Ga Gallium 27 863 6584 647 4936 4936 4934 1,38·10⁻²² I Iodine ▲ 27 1 1079 8232 809 6172 6162 1,15·10⁻²² I Laµ Lanthanum-l 28 895 6829		702	5264	527	4021								
23 1/6(8) 739 5638 555 4234 924 7050 694 5295* 5245 6,27·10⁻²²8 Eu Europium 24 767 5852 575 4387 959 7317 719 5486 7194 6,32·10⁻²²8 Cr Chromium 25 799 6096 599 4570 4472 1,01-10⁻²² Y Yttrium 25 799 6096 599 4570 4472 1,01-10⁻²² Y Yttrium 25 799 6096 599 4570 999 7622 749 5715 5780 8,48·10⁻²² Ası Arsenic-1 L 26 831 6340 623 4753 1039 7927 779 5943 5907 9,91·10⁻²² Ası Arsenic-1 L 27 863 6584 647 4936 8232 809 6172 6162 1,15·10⁻²² Laı Lanthanum-1 Laı Lanthanum-1 Praseodymium-1 </td <td></td>													
24 767 5852 575 4387 959 7317 719 5486 7194 6,32·10⁻²8 Cr Chromium 25 799 6096 599 4570 4472 1,01·10⁻² Y Ytrium 25 799 6096 599 4570 999 7622 749 5715 5780 8.48·10⁻²8 Ası Arsenic-1 ▲ 26 831 6340 623 4733 1039 7927 779 5943 5907 99!10⁻²8 Ga Gallium 27 863 6584 647 4936 4934 1,38·10⁻²7 I Iodine ▲ 28 895 6829 671 5119 1119 8538 839 6401 6769 1,40·10⁻²² Pr1 Praseodymium-1 28 895 6829 671 5119 1119 8538 839 6401 6769 1,40·10⁻²² Pr1 Praseodymium-1 29 927 7073													
25 799 6096 599 4570 6000 8,93·10⁻²8 Ra2 Radium -2 25 799 6096 599 4570 999 7622 749 5715 5780 8,48·10⁻²8 Ası Arsenic-1 ▲ 26 831 6340 623 4753 1039 7927 779 5943 5907 9.91·10⁻²8 Ga Gallium 27 863 6584 647 4936 4934 1,38·10⁻²² La Lanthanum-1 28 895 6829 671 5119 1119 8538 839 6401 6769 1,40·10⁻²² Pri Praseodymium-1 29 927 7073 695 5303 7007 1,61·10⁻²² Nd Neodymium-1 29 927 7073 695 5303 5323 1,38·10⁻²² Ge1 Germanium-1 29 927 7073 695 5303 762 5323 1,83·10⁻²² Ge1													•
25 799 6096 599 4570 999 7622 749 5715 5780 8,48·10⁻²²² Ası Arsenic-1 ▲ 26 831 6340 623 4753 1039 7927 779 5943 5907 9,91·10⁻²²² Ga Gallium 27 863 6584 647 4936 8232 809 6172 6162 1,15·10⁻²² Laı Lanthanum-1 28 895 6829 671 5119 1119 8538 839 6401 6769 1,40·10⁻²² Prı Praseodymium-1 29 927 7073 695 5303 839 6401 6769 1,40·10⁻²² Prı Praseodymium-1 29 927 7073 695 5303 843 869 6630 8790 1,33·10⁻²² Prı Praseodymium-1 29 927 7073 695 5303 843 869 6630 8790 1,33·10⁻²² Prı													
26 831 6340 623 4753 1039 7927 779 5943 5907 9,91·10⁻²²² Ga Gallium 27 863 6584 647 4936 4934 1,38·10⁻²² I Iodine ▲ 27 1079 8232 809 6172 6162 1,15·10⁻²² La₁ Lanthanum-I 28 895 6829 671 5119 1119 8538 839 6401 6769 1,40·10⁻²² Pr₁ Praseodymium-I 29 927 7073 695 5303 7007 1,61·10⁻²² Nd Neodymium-I 29 927 7073 695 5303 5323 1,83·10⁻²² Ge₁ Germanium-1 29 927 7073 695 5303 5323 1,83·10⁻²² Ge₁ Germanium-1 29 927 7317 719 5486 1199 9148 899 6859 7260 1,85·10⁻²² Pm Promethium 31 991 7561 743 5669 1239 9453													
27 863 6584 647 4936 8232 809 6172 6162 1,15⋅10⁻²⁻¹ La1 Lanthanum-1 28 895 6829 671 5119 1119 8538 839 6401 6769 1,40⋅10⁻²⁻¹ Pr1 Praseodymium-1 29 927 7073 695 5303 7007 1,61⋅10⁻²⁻¹ Nd Neodymium-1 29 927 7073 695 5303 7007 1,61⋅10⁻²⁻¹ Nd Neodymium-1 29 927 7073 695 5303 7007 1,61⋅10⁻²⁻¹ Nd Neodymium-1 29 927 7073 695 5303 7007 1,61⋅10⁻²⁻¹ Nd Neodymium-1 29 927 7073 695 5303 8843 869 6630 8790 1,34⋅10⁻²⁻¹ Co Cobalt 30 959 7317 719 5486 1199 9148 899 6859 7260 1,85⋅10⁻²⁻¹ Pm Promethium 31 991 7561 743 5669 <td></td>													
27 Lal Lanthanum-I 28 895 6829 671 5119 1119 8538 839 6401 6769 1,40·10 ⁻²⁷ Pr1 Praseodymium-I 29 927 7073 695 5303 7007 1,61·10 ⁻²⁷ Nd Neodymium-I 29 927 7073 695 5303 8483 869 6630 8790 1,34·10 ⁻²⁷ Co Cobalt 30 959 7317 719 5486 1199 9148 899 6859 7260 1,85·10 ⁻²⁷ Pm Promethium 31 991 7561 743 5669 1239 9453 929 7088 7286 2,10·10 ⁻²⁷ In Indium 32 1023 7805 767 5852 1279 9758 959 7317 5769 2,71·10 ⁻²⁷ Sn1 Stannum-1 33 1055 8049 791 6035 1319 10063 989 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1039</td><td>7927</td><td>779</td><td>5943</td><td></td><td></td><td></td><td></td></t<>						1039	7927	779	5943				
28 895 6829 671 5119 1119 8538 839 6401 6769 1,40·10 ⁻²⁷ Pr₁ Praseodymium-1 29 927 7073 695 5303 7007 1,61·10 ⁻²⁷ Nd Neodymium-1 29 927 7073 695 5303 5323 1,83·10 ⁻²⁷ Ge₁ Germanium-1 29 1159 8843 869 6630 8790 1,34·10 ⁻²⁷ Co Cobalt 30 959 7317 719 5486 1199 9148 899 6859 7260 1,85·10 ⁻²⁷ Pm Promethium 31 991 7561 743 5669 1239 9453 929 7088 7286 2,10·10 ⁻²⁷ In Indium 32 1023 7805 767 5852 1279 9758 959 7317 5769 2,71·10 ⁻²⁷ Sn₁ Stannum-1 33 1055 8049 791 6035 1319 10063 989 7546 6110 3,06·10 ⁻²⁷ V Vanad		863	6584	647	4936	1070	8222	200	6170				
29 927 7073 695 5303 7007 1,61·10 ⁻²⁷ Nd Neodymium-1 29 927 7073 695 5303 5323 1,83·10 ⁻²⁷ Ge1 Germanium-1 29 1159 8843 869 6630 8790 1,34·10 ⁻²⁷ Co Cobalt 30 959 7317 719 5486 1199 9148 899 6859 7260 1,35·10 ⁻²⁷ Pm Promethium 31 991 7561 743 5669 1239 9453 929 7088 7286 2,10·10 ⁻²⁷ In Indium 32 1023 7805 767 5852 1279 9758 959 7317 5769 2,71·10 ⁻²⁷ Sn1 Stannum-1 33 1055 8049 791 6035 1319 10063 989 7546 6110 3,06·10 ⁻²⁷ V Vanadium 34 1087 8293 815 6218		895	6829	671	5110								
29 927 7073 695 5303 s843 869 6630 8790 1,34·10 ⁻²⁷ Co Cobalt 30 959 7317 719 5486 1199 9148 899 6859 7260 1,85·10 ⁻²⁷ Pm Promethium 31 991 7561 743 5669 1239 9453 929 7088 7286 2,10·10 ⁻²⁷ In Indium 32 1023 7805 767 5852 1279 9758 959 7317 5769 2,71·10 ⁻²⁷ Sn1 Stannum-1 33 1055 8049 791 6035 1319 10063 989 7546 6110 3,06·10 ⁻²⁷ V Vanadium 34 1087 8293 815 6218 1359 10369 1019 7775 6272 3,45·10 ⁻²⁷ Te Tellurium ▲ 36 1151 8782 863 6584 6531 4,33·10 ⁻²⁷ Zr Zirconium 37 1183 9026 887 6767 1479 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>111)</td><td>0330</td><td>337</td><td>0701</td><td></td><td></td><td></td><td>_</td></t<>						111)	0330	337	0701				_
29 Image: color black of the													
30 959 7317 719 5486 1199 9148 899 6859 7260 1,85·10 ⁻²⁷ Pm Promethium 31 991 7561 743 5669 1239 9453 929 7088 7286 2,10·10 ⁻²⁷ In Indium 32 1023 7805 767 5852 1279 9758 959 7317 5769 2,71·10 ⁻²⁷ Sn1 Stannum-1 33 1055 8049 791 6035 1319 10063 989 7546 6110 3,06·10 ⁻²⁷ V Vanadium 34 1087 8293 815 6218 1359 10369 1019 7775 6272 3,45·10 ⁻²⁷ Te Tellurium	29					1159	8843	869	6630		$1,34 \cdot 10^{-27}$		
32 1023 7805 767 5852 1279 9758 959 7317 5769 2,71·10 ⁻²⁷ Sn1 Stannum-1 33 1055 8049 791 6035 1319 10063 989 7546 6110 3,06·10 ⁻²⁷ V Vanadium 34 1087 8293 815 6218 1359 10369 1019 7775 6272 3,45·10 ⁻²⁷ Te Tellurium ▲ 36 1151 8782 863 6584 6531 4,33·10 ⁻²⁷ Zr Zirconium 36 1183 9026 887 6767 1479 11284 1109 8461 8630 4,03·10 ⁻²⁷ Nb Niobium 38 1215 9270 911 6951 9314 4,74·10 ⁻²⁷ Pol Polonium-1 38 1215 9270 911 6951 8690 8642 4,48·10 ⁻²⁷ Cd Cadmium													
33 1055 8049 791 6035 1319 10063 989 7546 6110 3,06·10 ⁻²⁷ V Vanadium 34 1087 8293 815 6218 1359 10369 1019 7775 6272 3,45·10 ⁻²⁷ Te Tellurium ▲ 36 1151 8782 863 6584 6584 6531 4,33·10 ⁻²⁷ Zr Zirconium 36 1183 9026 887 6767 1479 11284 1109 8461 8630 4,03·10 ⁻²⁷ Nb Niobium 38 1215 9270 911 6951 9314 4,74·10 ⁻²⁷ Pol Polonium-1 38 1215 9270 911 6951 8690 8642 4,48·10 ⁻²⁷ Cd Cadmium													
34 1087 8293 815 6218 1359 10369 1019 7775 6272 3,45·10 ⁻²⁷ Te Tellurium ▲ 36 1151 8782 863 6584 6584 6531 4,33·10 ⁻²⁷ Zr Zirconium 36 1439 10979 1079 8232 8230 3,61·10 ⁻²⁷ Sei Selenium-1 37 1183 9026 887 6767 1479 11284 1109 8461 8630 4,03·10 ⁻²⁷ Nb Niobium 38 1215 9270 911 6951 9314 4,74·10 ⁻²⁷ Poi Polonium-1 38 1519 11589 1139 8690 8642 4,48·10 ⁻²⁷ Cd Cadmium													
36 1151 8782 863 6584 6531 4,33·10 ⁻²⁷ Zr Zirconium 36 1439 10979 1079 8232 8230 3,61·10 ⁻²⁷ Set Selenium-1 37 1183 9026 887 6767 1479 11284 1109 8461 8630 4,03·10 ⁻²⁷ Nb Niobium 38 1215 9270 911 6951 9314 4,74·10 ⁻²⁷ Pol Polonium-1 38 1519 11589 1139 8690 8642 4,48·10 ⁻²⁷ Cd Cadmium													
36 1439 10979 1079 8232 8230 3,61·10 ⁻²⁷ Set Selenium-1 37 1183 9026 887 6767 1479 11284 1109 8461 8630 4,03·10 ⁻²⁷ Nb Niobium 38 1215 9270 911 6951 9314 4,74·10 ⁻²⁷ Poi Polonium-1 38 1519 1159 1139 8690 8642 4,48·10 ⁻²⁷ Cd Cadmium						1339	10309	1019	7713				
37 1183 9026 887 6767 1479 11284 1109 8461 8630 4,03·10 ⁻²⁷ Nb Niobium 38 1215 9270 911 6951 9314 4,74·10 ⁻²⁷ Pol Polonium-1 38 1519 1159 1139 8690 8642 4,48·10 ⁻²⁷ Cd Cadmium		1131	0702	003	0.504	1439	10979	1079	8232				
38 1215 9270 911 6951 9314 4,74·10 ⁻²⁷ Po1 Polonium-1 38 1519 11589 1139 8690 8642 4,48·10 ⁻²⁷ Cd Cadmium		1183	9026	887	6767								
			9270								4,74.10-27		
39 1247 9514 935 7134 9523 5,25·10 ⁻²⁷ Po ₂ Polonium-2						1519	11589	1139	8690				
	39	1247	9514	935	7134					9523	5,25.10 ⁻²⁷	Po ₂	Polonium-2

39	1247	9514	935	7134					7144	5,96.10-27	Zn	Zinc
39					1559	11895	1169	8919	8902	$4,97 \cdot 10^{-27}$	Ni	Nickel
41	1311	10002	983	7500	1639	12505	1229	9377	10062	6,41 · 10-27	Ac	Actinium
41 1/8(6)	1315	10033	987	7530	1644	12543	1234	9415	7536	7,40.10-27	Sm ₁	Samarium
42	1343	10247	1007	7683	1679	12810	1259	9606	7469	$8,01 \cdot 10^{-27}$	Mn	Manganese
43	1375	10491	1031	7866					7872	8,8.10-27	Fe	Ferrum
43					1719	13115	1289	9835*	9800	$7,33 \cdot 10^{-27}$	Bi	Bismuth
44	1407	10735	1055	8049	1759	13421	1319	10063	7895	$9,65 \cdot 10^{-27}$	Gd	Gadolinium
45	1439	10979	1079	8232	1799	13726	1349	10292	8272	1,06.10-26	Tb ₁	Terbium -1
46					1839	14031	1379	10521	10500	9,58 · 10-27	Ag	Argentum
47	1503	11467	1127	8599	1879	14336	1409	10750	11563	$1,11 \cdot 10^{-26}$	Tc	Technetium
47	1503	11467	1127	8599					8559	$1,26 \cdot 10^{-26}$	Dy	Dysprosium
48	1535	11711	1151	8782	1919	14641	1439	10979	11724	$1,20 \cdot 10^{-26}$	Th	Thorium
48 1/6(8)	1539	11742	1155	8812	1924	14679	1444	11017	8799	1,38.10-26	Но	Holmium
49	1567	11956	1175	8965	1959	14946	1469	11208	8933	$1,48 \cdot 10^{-26}$	Cu	Cuprum
50	1183	12200	1199	9148	1999	15252	1499	11437	9062	$1,61 \cdot 10^{-26}$	Er	Erbium
51	1631	12444	1223	9331	2039	15557	1529	11666	9318	$1,74 \cdot 10^{-26}$	Tm	Thullium
53	1695	12932	1271	9697	2119	16167	1589	12123	12038	1,69·10 ⁻²⁶	Pd	Palladium
54	1727	13176	1295	9880					9849	$2,18 \cdot 10^{-26}$	Lu	Lutetium
54					2159	16472	1619	12352	12437	$1,82 \cdot 10^{-26}$	Ru	Rhutenium
55	1759	13421	1319	10063	2199	16778	1649	12581	16623	$1,70 \cdot 10^{-26}$	Ta	Tantalum
56	1791	13665	1343	10247	2239	17083	1679	12810	13680	$2,23 \cdot 10^{-26}$	Cm	Curium
56	1791	13665	1343	10247					10220	$2,53 \cdot 10^{-26}$	Mo	Molybdenum
57	1823	13909	1367	10430	2279	17388	1709	13039	13780	$2,39 \cdot 10^{-26}$	Am	Americium
58	1855	14153	1391	10613	2319	17693	1739	13268	13248	$2,41 \cdot 10^{-26}$	Hf	Hafnium
59	1887	14397	1415	10796	2359	17998	1769	13497	14193	$2,67 \cdot 10^{-26}$	Hg	Mercury
62	1983	15130	1487	11345	2479	18914	1859	14183	11340	$3,79 \cdot 10^{-26}$	Pb	Lead
63	2015	15374	1511	11528					15370	$3,56 \cdot 10^{-26}$	Pa	Protactinium
63					2519	19219	1889	14412	19263	$2,92 \cdot 10^{-26}$	W	Wolfram
64	2047	15618	1535	11711	2559	19524	1919	14641	19320	$3,11 \cdot 10^{-26}$	Au	Aurum
65	2079	15862	1559	11895	2599	19829	1949	14870	11870	$4,58 \cdot 10^{-26}$	Tl	Thallium
68	2175	16594	1631	12444	2719	20745	2039	15557	12423	5,49.10-26	Rh	Rhodium
69	2207	16839	1655	12627	2759	21050	2069	15786	21020	$4,19 \cdot 10^{-26}$	Re	Rhenium
71	2271	17327	1703	12993	2839	21661	2129	16243	21450	$4,7 \cdot 10^{-26}$	Pt	Platinum
73	2335	17815	1751	13359	2919	22271	2189	16701	22400	5,24.10-26	Ir	Iridium
74	2367	18059	1775	13543	2959	22576	2219	16930	22590	$5,54 \cdot 10^{-26}$	Os	Osmium
78	2495	19036	1871	14275	3119	23797	2339	17845	18950	8,36.10-26	U	Uranium
81	2591	19768	1943	14824			2429	18532	19816	$9,72 \cdot 10^{-26}$	Pu	Plutonium
83	2655	20257	1991	15191			2489	18990	20250	1,07·10 ⁻²⁵	Np	Neptunium
	NT /	T (1	1	. 1 1			TT 1			11 7		1

Note: For the chemical elements Br and Hg data shown in Table 7, are averaged. Legend:

Curium	Radioactive element according to MP (Modern Physics)
Actinium	Actinoid according to MP (Modern Physics)
Lanthanum	Lanthanide according to MC (Modern Chemistry)
A	Nonmetals

Gravitational density of substances in the solid state is calculated by formula:

$$\frac{\rho(He)}{N(He)} = \frac{\rho_{grav}(element)}{N_{true}(element)}, \text{ hence } \rho_{grav}(element) = N_{true}(element) \cdot \frac{\rho(He)}{N(He)},$$

where

 $\rho_{grav}(element)$ - calculated gravitational density of the given element in the table of conversions (solid state)

 $N_{true}(element)$ - true quantity of neutrons in the 'hedgehog' of the given element in the solid state the solid state

 $\rho(He)$ – Helium density in the solid state, being equal ρ =206 kg/m³

- quantity of neutrons in helium 'hedgehog' in the solid state, being equal N(He)to N=27

CARD № 8 VERIFICATION OF AVOGADRO'S LAW

Avogadro's law: «Equal volumes of gaseous substance at the similar pressure and temperature contain the same number of molecules, so the gas density is a measure of the mass of their molecules».

Determine the number of molecules of known gases in a volume of 22.4 liters under normal conditions, that is, verify the statement of the law of Avogadro and his constant ($N_A=6.022\cdot10^{23} \text{ mol}^{-1}$).

We calculated the mass of the "hedgehogs" of the chemical elements $m_{hedgehogs}$. All known gases are diatomic molecules, so the mass of one molecule of gas equal

$$m_{molecule} = 2 m_{hedgehogs}$$
.

Knowing the density of the gas under normal conditions ρ_{gas} , we can determine the mass of gas in a volume of 22.4 liters using the formula

$$m_{gas} = \rho_{gas} \cdot 22, 4 \cdot 10^{-3} \text{ (kg)}.$$

The number of gas molecules contained in a volume of 22.4 liters under normal conditions, define by the formula:

$$N_{molecule} = \frac{m_{gas}}{m_{molecule}} = \frac{\rho_{gas} \cdot 22, 4 \cdot 10^{-3}}{2 \cdot m_{hedgehog}}.$$

According to the above formula we will calculate the number of molecules of simple gases and will put them in a table.

Chemical element	m _{hedgehogs} , kg	Gas	$\rho_{\rm gas},\kappa\Gamma/{ m M}^3$	N _{molecule}
H (6×4)	$5,96 \cdot 10^{-34}$	\mathbf{H}_2	$8,988 \cdot 10^{-2}$	1,69·10 ³⁰
He (6×4)	$6,77 \cdot 10^{-33}$	He ₂	$1,785 \cdot 10^{-1}$	$2,95\cdot 10^{29}$
N (6×5)	$1,02 \cdot 10^{-30}$	N_2	1,2506	$1,38 \cdot 10^{28}$
Ne (6×5)	$3,44 \cdot 10^{-30}$	Ne ₂	$9,0035 \cdot 10^{-1}$	2,93·10 ²⁷
O (8×4)	$3,46\cdot10^{-30}$	O_2	1,429	4,62.1027
Ar (6×5)	$6,17 \cdot 10^{-30}$	Ar ₂	1,7839	3,24.1027
Cl (8×4)	$1,19 \cdot 10^{-29}$	Cl ₂	3,214	3,03·10 ²⁷
F (8×4)	$1,47 \cdot 10^{-29}$	\mathbf{F}_2	1,693	1,29.1027
Kr (6×5)	$6,7 \cdot 10^{-29}$	Kr ₂	3,745	6,26.10 ²⁶
Xe ^{g2} (6×5)	$1,28 \cdot 10^{-28}$	Xe ₂	5,851	5,13·10 ²⁶
Rn (8×4)	$2,50\cdot 10^{-28}$	Rn ₂	9,73	4,36.1026

This result shows that under normal conditions the number of molecules of a gas contained in a volume of 22.4 liters, is not constant N_A =6,022·10²³mol⁻¹.

Therefore Avogadro's law is not the law!

Accordingly, the universal gas constant $R = k \cdot N_A = 8,31 \cdot J/(\text{mol} \cdot K)$, where $k = 1,38 \cdot 10^{-23}$ J/K is the Boltzmann's constant, is not constant and depends on the type of gas.

8. Mass does not attract mass, i.e., the nature of gravity is other.

It has been determined on the evidence base that the mass is a physical object, not "a physical quantity is a property of the object".

The most convincing thing is to look closely at the formula of power in the modern formulation of the second Newton's law:

$$F = m \cdot a$$

Substituting instead of m (mass) its definition of Modern Physics (MP) in the form of "a physical quantity is an object property" we shall ask a question: can the "mass as an object property" be accelerated or slowed down or cannot?

It is obvious without any proofs that the abstract word 'property...' cannot be accelerated in principle, since it is impossible to exert force upon it.

There remains a definite answer that only the physical object of any size ranging from very small to the stars can get the acceleration under the action of force (see <u>6. Mass of a body</u> <u>what is it?</u>, <u>8. Additional explanations for the articles "mass of a body", "tables..." and an example of possibilities of Neutron sciences</u>).

Kilogram (kg) - this is a unit of measurement of the **resistance force of the chemical bonds** of a physical object to gravitational magnetic flux. Any mechanical force F, which is not related to mass m or with the g and which is applied to the body, is compared with the weight force: P = mg.

Electrical turbo generators receive electricity from the gravitational flow, i.e., from β^+ -particles (gravitons in NS).

In nuclear reactors burnable nuclear fuel produces no more than 7% of the electrical equivalent of the installed capacity of NPP power unit at $\eta \approx 30\%$ and the remaining 93% are supplied by gravitational flow from β^+ -particles. In the reactor a chain reaction occurs in the gravitational flow, and α^- -particles of nuclear fuel only create the conditions for its occurrence (α^- -particle in NS is the neutron in Modern Science (MF), see <u>6. Mass of a body – what is it?</u>).

Scheme of the chain reaction is as follows:

 α^- -particles of Uranium that are collided with a β^+ -particle of the flow, will divide the latter on α - and γ^- -particles (nuclear fission in MF), which, in turn, will continue to divide new β^+ -particles – the gravitons of the flow. For one primary α^- -particle of Uranium we have 270 α^- and 270 γ^- -particles of the flow.

In the electrical reactor electrical energy instead of nuclear fuel creates the conditions for starting a chain reaction all also in the gravitational flow of the β^+ -particle at the same cost no more than 7% of the electric installed capacity of NPP power unit. So, for a power unit of 1,000 MW, this would amount to no more than 70 MW.

Today we use gravitational flow, without knowing it. In the production chain of nuclear power plants in a nuclear reactor we get heat from the gravitational flow, and then by means of heat in the form of steam we produce electricity from gravitational flow in the turbogenerator. In our proposal we replace nuclear fuel for electrical energy with the same effect.

Thus, our power plants will become fuel-free power plants, and we can solve the problem of unlimited power generation with the preservation of the environment and climate (see <u>5. About trying to preserve the environment and the Earth climate</u>, with the possibility of a large production of fresh drinking water.

For more information, see http://neutronscience.com.ua/books/.